Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 848: 157697, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35914595

RESUMO

To understand biological interactions of plastic litter in freshwater ecosystems, as well the potential effects of plastics on ecosystem processes, studies of the activity and composition of plastic-associated microbial communities are needed. The physical properties and chemical composition of plastic polymers are key components of plastic product design, and may also select for distinct microbial biofilms colonizing plastic litter. We monitored growth and succession of biofilm communities on plastic substrates of common morphotypes (i.e., hard, soft, foam, and film) and a natural surface (i.e., an unglazed ceramic tile) incubated in an urban stream. We measured biofilm biomass, metabolism, extracellular enzyme activity, and bacterial, fungal and algal community composition over four weeks during primary succession. Results demonstrated a general increase in biofilm biomass and enzymatic activity corresponding to carbon, nitrogen and phosphorus metabolism during biofilm development for all substrate types. We observed higher respiration rates and negative net ecosystem productivity on foam and tile surfaces in comparison to hard, soft and film plastic surfaces. Biofilm bacterial, fungal and algal assemblages showed few significant differences in composition among substrates. However, all microbial communities changed significantly in composition over time. While substrate type was not the major factor driving biofilm composition and activity, these data show plastic litter in streams is well colonized by an active and dynamic biofilm community. As plastic litter is increasing across all types of aquatic ecosystems, it should be considered a medium for biologically active organisms that contribute to key ecosystem processes.


Assuntos
Microbiota , Plásticos , Bactérias , Biofilmes , Carbono , Ecossistema , Água Doce , Nitrogênio/farmacologia , Fósforo , Rios/microbiologia
2.
mSphere ; 3(4)2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976643

RESUMO

Urban streams are susceptible to stormwater and sewage inputs that can impact their ecological health and water quality. Microbial communities in streams play important functional roles, and their composition and metabolic potential can help assess ecological state and water quality. Although these environments are highly heterogenous, little is known about the influence of isolated perturbations, such as those resulting from rain events on urban stream microbiota. Here, we examined the microbial community composition and diversity in an urban stream during dry and wet weather conditions with both 16S rRNA gene sequencing across multiple years and shotgun metagenomics to more deeply analyze a single storm flow event. Metagenomics was used to assess population-level dynamics as well as shifts in the microbial community taxonomic profile and functional potential before and after a substantial rainfall. The results demonstrated general trends present in the stream under storm flow versus base flow conditions and also highlighted the influence of increased effluent flow following rain in shifting the stream microbial community from abundant freshwater taxa to those more associated with urban/anthropogenic settings. Shifts in the taxonomic composition were also linked to changes in functional gene content, particularly for transmembrane transport and organic substance biosynthesis. We also observed an increase in relative abundance of genes encoding degradation of organic pollutants and antibiotic resistance after rain. Overall, this study highlighted some differences in the microbial community of an urban stream under storm flow conditions and showed the impact of a storm flow event on the microbiome from an environmental and public health perspective.IMPORTANCE Urban streams in various parts of the world are facing increased anthropogenic pressure on their water quality, and storm flow events represent one such source of complex physical, chemical, and biological perturbations. Microorganisms are important components of these streams from both ecological and public health perspectives. Analysis of the effect of perturbations on the stream microbial community can help improve current knowledge on the impact such chronic disturbances can have on these water resources. This study examines microbial community dynamics during rain-induced storm flow conditions in an urban stream of the Chicago Area Waterway System. Additionally, using shotgun metagenomics we identified significant shifts in the microbial community composition and functional gene content following a high-rainfall event, with potential environment and public health implications. Previous work in this area has focused on specific genes/organisms or has not assessed immediate storm flow impact.


Assuntos
Biota , Tempestades Ciclônicas , Rios/microbiologia , Chicago , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Metagenômica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269503

RESUMO

Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae, Legionellaceae, Moraxellaceae, and Neisseriaceae, in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies.IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint, including genes specific to antibiotic resistance and mobile genetic elements and their associated organisms, from WWTPs to lake sediments. Our work is novel in that we used metagenomic data sets to comprehensively evaluate total gene content and the genetic and taxonomic context of specific genes in environmental samples putatively impacted by WWTP inputs. Based on two different WWTPs with different treatment processes, our findings point to an influence of WWTPs on the presence, abundance, and composition of these factors in the environment.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Metagenoma , Microbiota , Águas Residuárias/microbiologia , Bactérias/genética , Genes Bacterianos , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...